
Università di Pisa

Master Of Science in Computer Engineering

Performance Evaluation of Computer
Systems and Networks

Satellite Communications

Project members:
Dario Bandecchi
Francesco De Lucchini
Niccolò Mulè

Academic Year 2024/2025

Contents
1 Introduction 1

1.1 Problem Description . 1
1.1.1 Communication system . 1
1.1.2 Scheduling algorithm . 1

1.2 Objectives . 1
1.3 Key Performance Indicators . 2

2 Modeling 3
2.1 General Assumptions . 3
2.2 Preliminary validation . 3
2.3 Parameters . 3
2.4 Factors . 4

3 Implementation 5
3.1 Modules . 5
3.2 Connections . 6
3.3 Custom Messages . 6

4 Verification 7
4.1 Debugging . 7
4.2 Runtime error handling . 8
4.3 Memory analysis and code profiling . 9
4.4 Behavioral tests . 10

4.4.1 Deterministic test . 10
4.4.2 Introducing randomness . 10
4.4.3 Continuity test . 11
4.4.4 Degeneracy test . 12
4.4.5 Consistency test . 12

5 Calibration 14
5.1 Packet inter-arrival times and sizes . 14
5.2 Coding rate distributions . 14
5.3 Warm-up period and simulation time limit 15

6 Experiment design 17

7 Data analysis 18
7.1 Analysis of the throughput . 18
7.2 Analysis of the mean frame utilization . 19
7.3 Analysis of the delays . 20

8 Conclusions 23

9 Appendix 24
9.1 Mathematical verification of the mean frame utilization 24
9.2 Mathematical verification of the mean delay 27

i

1 Introduction

1.1 Problem Description

1.1.1 Communication system

Consider a communication system with N terminals that receive packets from a ground
station via a satellite, which acts as a simple relay node. Each terminal has its own dedicated
FIFO queue at the ground station, with packets of size S bytes arriving at each queue
every T seconds. S and T are uniformly and exponentially distributed random variables,
respectively.

Transmissions from the ground station occur in time slots of fixed and constant duration of
80 ms, organized in the following way:

• First, each terminal randomly selects a coding rate (the maximum data rate supported)
from the set {L3, L2, L1, R, H1, H2, H3}, and reports it to the ground station

• Then, the ground station composes a frame of M blocks by scheduling packets from the
terminals’ queues, as described in Section 1.1.2

• Finally, the composed frame is sent back to the terminals

1.1.2 Scheduling algorithm

The ground station serves the terminals according to a maximum-coding-rate policy, i.e.,
by sorting them based on their reported coding rate and starting from the highest one (H3).
When a terminal is considered for service, the ground station tries to empty the terminal’s
queue before considering the next one. Each block is assigned the coding rate of the terminal
who owns the first packet scheduled inside of it, and that, according to the following table,
determines the block’s capacity:

Coding rate L3 L2 L1 R H1 H2 H3
Capacity (bytes) 904/M 1356/M 1808/M 2260/M 2712/M 3164/M 3616/M

A block can carry packets for multiple terminals, as long as the coding rate of such terminals
is greater or equal than the coding rate of the block, and a packet can be segmented into
multiple blocks, as long as it completely fits in a single frame.

1.2 Objectives

The objective of this project is to study the effectiveness of a maximum-coding-rate scheduling
algorithm in a satellite-based communication system.

1

1.3 Key Performance Indicators

The effectiveness of the proposed scheduling algorithm is studied through the analysis of the
following key performance indicators:

• The throughput, computed as the number of bits sent out by the ground station per
unit of time

• The mean delay, measured by each terminal as the average elapsed time between the
arrival of a packet at the ground station and its arrival at the terminal itself

• The mean frame utilization, defined as the average of the frame utilizations, i.e., the
total size of the scheduled packets divided by the frame capacity (which is given by the
sum of the capacities of the single blocks)

2

2 Modeling

2.1 General Assumptions

Considering the objective of this study, and considering the chosen key performance indicators,
the system can, without loss of generality, be simplified in the following way:

• All the transmissions to and from the satellite are instantaneous

• The processing times (e.g., the time it takes the ground station to create a frame) are
negligible

• The queues of the ground station are infinite

2.2 Preliminary validation

A preliminary validation of the model is carried out by analyzing the assumptions made so
far:

• The propagation times over the satellite link are assumed to be instantaneous because
they are not relevant to the objective and key performance indicators of this study. In
fact, even if the satellite link was modeled to have a propagation time, it would have been
a somewhat constant value, given by the average distance from the satellite divided by
the speed of light. This would have not affected the throughput or the frame utilization,
and it would have only shifted the delays of the packets by, more or less, the same
value. Therefore, it is safe to assume the propagation times over the satellite link to be
instantaneous. Similar reasoning applies to the processing times

• Infinite queues allow to focus on the core system dynamics, without having to handle
edge cases (e.g., dropped packets). Moreover, in a real system, queues would be sized in
such way that the probability of dropping a packet under normal operating conditions is
“small enough”, therefore, it is reasonable to assume this probability to be negligible in
the model

2.3 Parameters

The system is characterized by the following parameters, which are calibrated once and then
kept fixed in all of the simulations:

• minPacketSize and maxPacketSize, the extremes of the uniform distribution repre-
senting the size of the packets

• meanPacketInterarrivalTime, the mean of the exponential distribution representing
the inter-arrival time of the packets at each queue of the ground station

3

2.4 Factors

The performance of the system is studied as the following factors vary:

• N 1, the number of terminals

• M 1, the number of blocks per frame

• The distribution of the coding rates of the terminals

1 To improve the readability of the code, N and M are called terminalCount and blocksPerFrame,
respectively. From now on, these terms will be used interchangeably.

4

3 Implementation

3.1 Modules

The simulator is developed using OMNeT++, a C++ discrete event simulation framework, and
is composed by the following modules2:

• A GroundStation compound module (hence, with no active behavior), composed by:

– An array of PacketGenerator modules, one for each Terminal, which are responsible
for generating the Packets destined to their corresponding Terminal (i.e., the i-th
PacketGenerator generates the Packets destined to the i-th Terminal).
More specifically, each PacketGenerator :
1. Extracts an inter-arrival time and uses it to set a timer
2. When the timer ticks, extracts a size, builds a Packet with that size, sends it to

the PacketScheduler, and then repeats step 1
Since the extractions are always alternated, the two random variables (the size and the
inter-arrival time) are independent “by design”, and, therefore, each PacketGenerator
module only requires one global random number generator (RNG)

– A PacketScheduler module, which carries out the following tasks:
1. Collects incoming Packets from the PacketGenerators and stores them in the

corresponding queue
2. Receives the CodingRatePackets from the Terminals and keeps count of how

many have been received so far in the current communication slot
3. Once all the CodingRatePackets have been received, builds a Frame according

to the algorithm described in Section 1.1.2 and sends it to the Satellite
4. Finally, computes and emits the throughput and the frame utilization

• A Satellite module, which simply acts as a relay node:

– Whenever it receives a CodingRatePacket from a Terminal, it forwards it to the
GroundStation

– Whenever it receives a Frame from the GroundStation, it broadcasts it to the Terminals

• An array of terminalCount Terminals, which are responsible for initiating the com-
munication slot (i.e., sending out their CodingRatePacket every 80 ms) and computing
the delays (if a Packet is segmented, its delay is emitted only when the last segment
is fetched). In order for the coding rates to be independent, each Terminal must be
linked to a different global RNG. Considering also the global RNGs required by the
PacketGenerators, the simulator counts a total of 2 · terminalCount global RNGs

• An Oracle (virtual) module, which has no active behavior or connections, and is only
used to maintain the positions of the Packets within a Frame , allowing the Terminals
to efficiently retrieve their own Packets without having to loop through all the blocks in
the Frame

2 To improve the readability of this section (and, more in general, of this whole chapter), the following
convention is used: Modules are written in PascalCase italics, while CustomMessages are written in PascalCase
monospace italics

5

3.2 Connections

Figure 1: OMNeT++ network design. Dashed arrows indicate direct (wireless) connections.

3.3 Custom Messages

The simulator utilizes the following custom messages:

• GenericPacket: Represents a generic packet in the communication system. It extends
the cPacket class already available in OMNeT++ by adding a terminalId integer field,
which specifies the packet’s destination Terminal. It extends the cPacket class and not
the cMessage class because the first one already comes with an integer field representing
the packet’s size.

• CodingRatePacket: Extends the GenericPacket class described before by adding a
codingRate enumeration field. It is only used by the Terminals to communicate their
coding rates to the GroundStation

• Frame: Extends the cPacket class by adding an array of blocksPerFrame Blocks.
Again, it extends the cPacket class and not the cMessage class because of the presence
of the size field, which simplifies the computation of the throughput. A Block is an
extension of the cObject class equipped with a codingRate enumeration field, two integer
fields, maxBytes and usedBytes, and a GenericPacket * array field. Since the Satellite
duplicates the Frame multiple times during the broadcasting process, an array of pointers
to GenericPackets is preferred (only the pointers are copied); of course, each Terminal
is responsible for de-allocating (only) its own GenericPackets

6

4 Verification

4.1 Debugging

The simulator takes advantage of C++’s conditional compilation (#ifdef MACRO ...
#endif) to provide users with a modular debugging environment. While this approach may
not be considered best practice in bigger projects, for smaller ones, it offers a quick and
straightforward way of selectively enabling not only debugging statements but entire portions
of code.

The implemented debugging features are defined in the makefrag file, OMNeT++’s
intended way of extending the makefile. One in particular deserves attention and it
is the DEBUG_RNGS flag, which enables detailed debugging statements regarding every-
thing that is random in the simulation. Specifically, each time a module extracts a
random variable, it outputs the total number of calls made so far to the global random
number generator linked to the module. This comes in handy to check that random
variables which are assumed to be independent actually come from independent RNG streams.

An example of the output provided by this macro, along with a few comments that explain
the context, is the following:

First, each packetGenerator extracts the arrival time of the first packet
DEBUG: [0.000]> Extracted nextArrivalTime for terminal 0 | Total RNG calls: 1
DEBUG: [0.000]> Extracted nextArrivalTime for terminal 1 | Total RNG calls: 1

Then, each time a timer ticks, the packetGenerator module who set it
extracts a size for the incoming packet and the arrival time of the
next one
DEBUG: [0.023]> Extracted byteLength for terminal 1 | Total RNG calls: 2
DEBUG: [0.023]> Extracted nextArrivalTime for terminal 1 | Total RNG calls: 3
DEBUG: [0.024]> Extracted byteLength for terminal 1 | Total RNG calls: 4
DEBUG: [0.024]> Extracted nextArrivalTime for terminal 1 | Total RNG calls: 5
DEBUG: [0.032]> Extracted byteLength for terminal 0 | Total RNG calls: 2
DEBUG: [0.032]> Extracted nextArrivalTime for terminal 0 | Total RNG calls: 3

Finally, at the beginning of each communication slot (the first
one starts at 80ms), the terminals extract their coding rates
DEBUG: [0.080]> Extracted codingRate for terminal 0 | Total RNG calls: 1
DEBUG: [0.080]> Extracted codingRate for terminal 1 | Total RNG calls: 1

From this example it is clear that, as explained in Section 3.1, each packet generator and
each terminal is linked to a different global RNG, which makes all the inter-arrival times, the
packet sizes, and the coding rates independent random variables, as expected.

7

4.2 Runtime error handling

OMNeT++’s cRuntimeError class is used to stop a simulation whenever an obviously impos-
sible logical condition verifies. Examples of such conditions are:

• In packetScheduler.cc

157 if (frame ->getByteLength () > getMaxTheoreticalFrameBytes ())
158 {
159 throw cRuntimeError(this , "The size of the current frame (%lld) is

greater than the maximum theoretical size (%d)", frame ->
getByteLength (), getMaxTheoreticalFrameBytes ());

160 }

• In CodingRatePacket.msg

19 switch (codingRate)
20 {
21 case L3:

...
33 case H3:

...
35 default:
36 throw omnetpp :: cRuntimeError("The specified coding rate (%d)

does not exist", codingRate);
36 }

• In terminal.cc

167 if (packet ->getTerminalId () != id)
168 {
169 throw cRuntimeError(this , "Terminal %d was allowed to read a

packet destined to terminal %d", id, packet ->getTerminalId ());
170 }

• In satellite.cc

27 if (msg ->isName("codingRatePacket"))
28 {
29 /* Forward the message to the ground station */

...
35 }
36 else if (msg ->isName("frame"))
37 {
38 /* Broadcast the message to the terminals */

...
50 }
51 else
52 {
53 throw cRuntimeError(this , "The satellite cannot handle the

received message: %s. Supported types are:
\" codingRatePacket \", \"frame \"", msg ->getName ());

54 }

8

4.3 Memory analysis and code profiling

The code was analyzed for memory leaks using Valgrind in a memory-aggressive scenario,
i.e., one where the system receives more packets than it is able to handle (and so queues fill
up over time). An example of such scenario is the following, where the mean flow of incoming
packets, 400 Kbps (10 queues, receiving, on average, packets of (20 + 380)/2 · 8 bits every
40 ms), is higher than the maximum theoretical throughput, 361.6 Kbps (a full frame of
H3 blocks, i.e., 3616 · 8 bits, sent every 80 ms):

Parameter/Factor Value
sim-time-limit 80 s
repeat 30

codingRateDistribution Uniform
terminalCount 10

blocksPerFrame 10

minPacketSize 20 bytes
maxPacketSize 380 bytes
meanPacketInterarrivalTime 40 ms

==5943== Using Valgrind-3.22.0 and LibVEX
==5943==
==5943== HEAP SUMMARY:
==5943== in use at exit: 16,768 bytes in 7 blocks
==5943== total heap usage:
==5943== 91,106,704 allocs,
==5943== 91,106,697 frees,
==5943== 6,716,264,373 bytes allocated
==5943==
==5943== LEAK SUMMARY:
==5943== definitely lost: 0 bytes in 0 blocks
==5943== indirectly lost: 0 bytes in 0 blocks
==5943== possibly lost: 0 bytes in 0 blocks
==5943== still reachable: 16,768 bytes in 7 blocks
==5943== suppressed: 0 bytes in 0 blocks
==5943==
==5943== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

The “still reachable” category within Valgrind’s leak report refers to blocks of memory that
were not freed, but could have been freed if the programmer had wanted to, because the
program was still correctly keeping track of their pointers. Those memory blocks are likely to
be data structures managed by OMNeT++’s simulation kernel, as their size remains constant
when the simulation factors change. Consequently, these results provide compelling evidence
that the code is free of memory leaks.

Moreover, using KCachegrind to analyze Callgrind’s profiling data did not reveal any
critical function (i.e., a function that takes much longer than others to complete).

9

4.4 Behavioral tests

The behavior of the system is now tested in simple scenarios that can be manually checked
for correctness, starting off with a deterministic test.

4.4.1 Deterministic test

Consider the following scenario:

Parameter/Factor Value
sim-time-limit 800 s
codingRate (deterministic) R
terminalCount 1

blocksPerFrame 1

minPacketSize 1 byte
maxPacketSize 1 byte
packetInterarrivalTime (deterministic) 1 ms

Packets of fixed size of 1 byte are scheduled to arrive at the (only) queue every 1 ms,
consequently, every communication slot, a total of 80 packets will arrive. Given that the
(only) terminal always has a coding rate of R, which corresponds to a block capacity of
2260 bytes, all the packets always fit in the first frame sent after their arrival, therefore, we
expect to measure the following statistics:

• Throughput: 8 Kbps (i.e., 1 queue, receiving packets of 1 · 8 bits, every 1 ms)

• Mean frame utilization: 80/2260 = 3.540%

• Mean delay:

(79 + 78 + ...+ 1 + 0)

80
=

79 · (79 + 1)/2

80
=

79 · 80
2 · 80

=
79

2
= 39.5 ms

Where, in the first sum, 79 ms is the delay of the first packet, which arrives 1 ms after
the previous communication slot, and 0 ms is the delay of the last packet, which arrives
right on time to be immediately sent to the terminal

The results of the simulation are exactly the ones we expected, therefore, we can move on
and introduce randomness in our tests.

4.4.2 Introducing randomness

Consider the same scenario as the one used in Section 4.4.1, with the only changes being
that the inter-arrival times of the packets are now exponentially distributed with mean 1 ms,
and the coding rates are now uniformly distributed:

10

Parameter/Factor Value
sim-time-limit 800 s
repeat 30

codingRateDistribution Uniform
terminalCount 1

blocksPerFrame 1

minPacketSize 1 byte
maxPacketSize 1 byte
meanPacketInterarrivalTime 1 ms

On average, we expect the throughput to remain the same, however, different considerations
must be made when it comes to the mean frame utilization and the mean delay:

• Since, in this case, the size and capacity of a frame are independent random variables, we
expect the mean frame utilization to be:

E
[

Size
Capacity

]
= E [Size] · E

[
1

Capacity

]
= 80 · 1

7

(
1

904
+ ...+

1

3616

)
= 4.344%

• As the simulation time approaches infinity, we expect packets to arrive at every possible
offset between a communication slot and the one after, in an uniformly distributed way3.
Therefore, given that, in this particular scenario, packets always fit in the first frame sent
after their arrival, we expect the delays to be uniformly distributed between 0 and 80 ms,
with, of course, a mean of 40 ms

After running 30 independent simulations, the averaged results, considering 99% confidence
intervals, are the following:

• Throughput: 8.000± 0.003 = [7.997, 8.004] Kbps

• Mean frame utilization: 4.344± 0.010 = [4.334, 4.354]%

• Mean delay: 39.997± 0.014 = [39.983, 40.010] ms

Since the predicted results lie inside of the confidence intervals, we can say with 99%
confidence that the system behaves as expected in this particular scenario.

4.4.3 Continuity test

Considering the same scenario as the one used in Section 4.4.2, since there is only one terminal
and all the packets always fit in the first frame after their arrival, we expect that:

• Having one or an arbitrary number of blocks per frame does not change anything at all
3Qualitatively, we measured this to be true as long as the simulation duration is at least in the order of

104 times the mean packet inter-arrival time.

11

• Whatever the distribution of the coding rates, both the throughput and the delays stay
exactly the same (other than an uniform, we tested this using a binomial with parameters
n = 6, p = 0.5)

• Slightly changing the duration of the communication slot only changes the mean delay to
exactly half of the new communication slot duration, as explained in Section 4.4.2

All of the previous statements have been confirmed to be true with the simulator.

4.4.4 Degeneracy test

Considering, again, the scenario described in Section 4.4.2, if we set the size of the packets to
0 bytes, then we should observe: a throughput of 0 bps, a mean frame utilization of 0%, and
the same exact delays. That is precisely what happens in the simulation.

Another quick degeneracy test is checking that the maximum theoretical throughput
(361.60 Kbps) is indeed reachable under optimal conditions, which are the following ones:

• The coding rate of any terminal is always the maximum one, H3

• Packets are one byte big, so they can fit anywhere and always fill the frame

• There always are as many packets to send as the ones needed to fill a frame

Under such conditions, achieved by manually assigning H3 to every terminal and using a
very low mean packet inter-arrival time (e.g., 0.01 ms), we correctly measured the maximum
theoretical throughput (and, of course, a frame utilization of 100%), hence, the system
behaves as expected.

Note that, in this very peculiar case, even though there is only one terminal, having one or
an arbitrary number of blocks per frame does affect the throughput. This is because of the
truncation error introduced when calculating the capacity of the blocks: if, under the optimal
conditions stated before, we set the number of blocks in a frame to 100, then, the capacity of
each block is 36.16 ≈ 36 bytes, leading to a throughput of 360.00 Kbps.

4.4.5 Consistency test

Considering, one last time, the same scenario as the one used in Section 4.4.2, we expect
to measure, one average, twice the throughput (16 Kbps), twice the mean frame utilization
(8.687%), and the same mean delay (40 ms), if any of the following changes are made:

• Double the size of the packets (from 1 byte to 2 bytes)

• Half the mean packet inter-arrival time (from 1 ms to 0.5 ms)

If, instead, we double the number of terminals (from 1 to 2), the complexity of the system
skyrockets, and manually verifying the results becomes way harder; nevertheless, we tried
anyway to make sense of them. After running 30 independent simulations, the averaged
results, considering 99% confidence intervals (not visible due to the scale), are the ones
reported in Figure 2.

12

Figure 2: Consistency test

One can immediately observe that when doubling the size of the packets and when cutting
in half the inter-arrival times, the system behaves exactly as expected, moreover, there is
no reason to believe that by doubling the number of terminals the throughput should be
anything other than 16 Kbps.

When it comes to the mean delay4, intuitively, it makes sense that with still one block but
two terminals it gets higher. This is because the two terminals compete for that single block,
and, when they lose (i.e., they extract a coding rate strictly lower than the other terminal),
their packets will have to wait (at least) an entire communication slot.

A mathematical explanation for both the apparently odd values of mean frame utilization
and mean delay obtained when doubling the number of terminals can be found in Section 9.

4In case of two terminals, we take, for each repetition, the mean delay measured by the first one (which,
in case of uniformly distributed coding rates, is representative of all terminals)

13

5 Calibration
In this section, we outline the tests that were conducted in order to calibrate the parameters
of the simulator, which include the ones listed in Section 2.3 as well as the warm-up time,
the simulation time, and the parameters for the distribution of the coding rates.

5.1 Packet inter-arrival times and sizes

We calibrated the parameters of the simulation in the following way:

Parameter Value
minPacketSize 20 bytes
maxPacketSize 80 bytes
meanPacketInterarrivalTime 40 ms

Intuitively, these values make sense because:

• The mean packet inter-arrival time is not wildly different from the duration of a commu-
nication slot

• The minimum packet size is at least a few bytes (in the real world, packets always have a
fixed minimum size given by their headers)

• The maximum packet size is not bigger than, more or less, a hundred bytes (otherwise,
given the table in Section 1.1.2, it would have been too hard to schedule)

5.2 Coding rate distributions

As explained in Section 2.4, among the other things, we want to study the performance of
the system as the distribution of the coding rates vary. The distributions that we chose to
analyze are:

• A (discretized) uniform distribution with parameters (0, 7), which is always useful as a
baseline benchmark, although it is quite unrealistic to encounter in a real system, since it
would imply that very high (or low) values of coding rate (hence, SNR) are as frequent as
average ones

• A binomial distribution, chosen in such way that the mean coding rate of different
terminals are sensibly different, which might represent a network where terminals are
fixed and, therefore, their SNR is biased by their geographical location (e.g., presence of
obstacles, distance from the satellite, ...)

• A (discretized) normal distribution with parameters (µ = 3.5, σ = 1), which could model
a real-world scenario where most of the time terminals have average performance, but
occasionally either very good or poor

Specifically, when using the binomial distribution, to achieve the fact that the mean coding
rate of different terminals are sensibly different, each terminal employs a slightly different

14

binomial distribution, with parameters n = 6 (the number of possible coding rates, including
0), and

p =
terminalId+ 1

terminalCount+ 1
,

where the +1 terms ensure that no terminal has p = 0 (always L3) or p = 1 (always H3).
Figure 3 shows an example of this when terminalCount = 3.

Figure 3: Binomial distributions of the coding rates when terminalCount = 3

5.3 Warm-up period and simulation time limit

Considering the scenario described in the table below, which uses the parameters calibrated
in Section 5.1 and represents the system under normal operating conditions, we estimated
the warm-up period by observing the time average of the throughput over 10 independent
repetitions, as shown in Figure 4.

Parameter/Factor Value
sim-time-limit 80 s
repeat 10

terminalCount 20

codingRateDistribution Uniform
blocksPerFrame 4

minPacketSize 20 byte
maxPacketSize 80 byte
meanPacketInterarrivalTime 40 ms

15

Figure 4: Calibration of the warmup period under normal operating conditions. The thick
line represents the mean and standard deviation of a group of 10 independent repetitions
(thin lines) in correspondence of the same communication slot, subsampled with a ratio 1:10.

As illustrated in Figure 4, starting at simulation time of approximately 10 seconds, the
standard deviations of the repetitions remain relatively constant, thereby signifying the
conclusion of the warm-up phase. Furthermore, it is reasonable to select a simulation time
limit which is considerably longer than the warm-up period. Considering also the trade-off
with the CPU time required to execute the simulations, 800 seconds (104 communication
slots) appears to be an appropriate simulation time limit.

16

6 Experiment design
Consider N queues receiving, on average, packets of S bytes every T ms, as long as S, T
and N are set in such way that the mean flow of incoming packets (N · S · 8 · 1/T) does not
approach the maximum theoretical throughput (361.6 Kbps), then the delays of the packets
stay in the order of a communication slot duration. Instead, if the mean flow of incoming
packets approaches or surpasses the maximum theoretical throughput, then the packets
starts queuing up, and, thus, the delays grow linearly over time.

When the coding rates are uniformly distributed, this phenomenon starts happening for
incoming flows of around 2260 · 8 · 1/0.080 = 226 Kbps, where 2260 bytes is the mean frame
capacity. Figure 5 shows exactly this behavior for N = 1, T = 1 ms and various values of S:
when S = 25, the mean flow of incoming packets is 1 · 25 · 8 · 1/0.001 = 200 Kbps, which is
lower than 226 Kbps, and, therefore, the delays do not grow over time, instead, with S = 30
and S = 35, the mean flow of incoming packets is greater than 226 Kbps, and, consequently,
the delays grow linearly over time.

Figure 5: Thin lines are single independent repetitions (10 for each value of S), while thick
lines are the mean of the corresponding group of repetitions

Keeping that in mind, in order to obtain a comprehensive understanding of the system’s
behavior, the experiments should be designed in such way that the mean flow of incoming
packets (N · (80 + 20)/2 · 8 · 1/0.004 = 10N Kbps) is lower than, in the order of, and greater
than the maximum theoretical throughput. Moreover, instead of using constant values, it
also makes sense to set the number of blocks per frame as a fraction of the number of terminals.

That said, we assigned the following ranges to the factors of the simulation:

• N = {10, 20, 30, 40, 50, 60}

• M = {20%, 40%, 60%, 80 %, 100%} of N

• CR = {Uniform, Binomial, Normal}

17

7 Data analysis
All the charts in this section were computed using averaged results obtained by running 30
independent simulations. When not vanishingly little, 99% confidence intervals are shown.

7.1 Analysis of the throughput

Figure 6: Throughput of the system as the number of terminals, the number of blocks per
frame, and the distribution of the coding rates vary.

Figure 6 shows that, as expected, regardless of the number of blocks per frame and the
distribution of the coding rates, the throughput increases as the number of terminals
grows large, up to the maximum theoretical value of 361.6 Kbps. This is because, trivially,
the more are the terminals, the more are the packets to send, and also the higher is the
probability of scheduling terminals with the highest coding rate.

Note that this is also true when the coding rates are normally distributed, the convergence
to the maximum theoretical throughput is slow due the very low probability of extracting
the highest coding rate. Oppositely, when the coding rates are uniformly distributed,
the probability of extracting the highest coding rate is no different than the probability of
extracting any other coding rate, hence, the convergence to the maximum theoretical
throughput is faster. When it comes to the binomial distribution, instead, only a
handful of terminals gets consistently scheduled (the ones with an higher parameter p),
therefore, the problem is not finding terminals with the highest coding rate, but having
enough terminals with the highest coding rate that they alone are able to fill a frame each time.

18

Furthermore, as far as the throughput is concerned, varying the number of
blocks per frame has an appreciable effect only when the coding rates are
binomially distributed, and only for low-to-average numbers of terminals. This is because,
when the coding rates are uniformly or normally distributed, at each communication
slot there always are a considerable amount of terminals with the same coding rate,
therefore, they most likely can already be scheduled in the same block, and, hence,
changing the number of blocks per frame does not yield appreciable results. Instead,
when the coding rates are binomially distributed, increasing the number of blocks per
frame also gives the low-end terminals a chance of consistently contributing to the throughput.

Generally speaking, regardless of the distribution of the coding rates, for large values of N ,
the frame is almost always exclusively composed by H3 blocks. Therefore, only considering
the throughput, it would be more convenient set the value of blocks per frame as low as
possible, in order to speed up the scheduling process and avoid the block size truncation
problems explained in Section 4.4.4.

7.2 Analysis of the mean frame utilization

Figure 7: Mean frame utilization as the number of terminals, the number of blocks per frame,
and the distribution of the coding rates vary.

The mean frame utilization indicates how well the available resources (i.e., the space in the
frame) are used. As expected, with an higher number blocks per frame there is less
wasted space, and, thus, an higher frame utilization (if M = 1, the terminals with the
highest coding rate take the whole frame even in they only have a few packets). Intuitively,
this phenomenon becomes less and less relevant as the number of terminals gets higher, since
more of them get the highest coding rate, and, consequently, can be scheduled anyway in the
same block.

19

Generally speaking, an higher frame utilization also implies an higher throughput,
but that’s not the full picture. Consider the case of normally distributed coding rates,
Figure 7 shows that the mean frame utilization is already indistinguishably close to one
for N = 30, however, for that same number of terminals, the throughput is nowhere close
to the maximum theoretical one. This is because it’s true that the frame almost always
gets full, but that same frame rarely has the maximum capacity (the probability of ex-
tracting a single H3 terminal is low, let alone the one of scheduling an entire frame of H3 blocks).

Finally, Figure 7 shows that when the coding rates are binomially distributed, the
mean frame utilization is the worst. This is because, as already said in Section 7.1, only
a handful of terminals gets consistently scheduled, therefore, an higher number of blocks per
frame is needed to give the low-end terminals a chance of consistently contributing to the
throughput.

7.3 Analysis of the delays

When the coding rates are uniformly or normally distributed, all the terminals
contribute equally, therefore, when it comes to measuring statistics, one terminal is
representative of all the others. Consequently, in the following charts we plot the mean
delay measured by the first terminal, averaging the results over 30 independent simulations.

Figure 8: Qualitative plot of the mean delay against the number of terminals

Figure 8 shows that the mean delays skyrocket (even in log scale) when the number of
terminals gets to around 30 ∼ 40. This is because, for those same numbers of terminals,
the mean frame utilization approaches 1, meaning that there is no space left in the frame,
consequently, adding more terminals only decreases the chance of getting scheduled, hence,
raising the delays.

20

Figure 9: Effect of the number of blocks per frame on the mean delay

When the coding rates are uniformly or normally distributed, considering an acceptable
upper bound of 250 ms for the mean delay, we can restrict the study up to values of N
of around 30, since, as shown in 8, after that the mean delays skyrocket.

As shown in Figure 9, we can say with 99% confidence that having an higher number of
blocks per frame is beneficial to the mean delays, and it is particularly beneficial for
lower values of N , as already explained in Section 7.

For N = 30, the mean delay of the terminals with normally distributed coding rates is
significantly higher than both the uniformly distributed counterpart and the acceptable
upper bound. This is because, as shown in Figure 7, when the coding rates are normally
distributed the system reaches the maximum frame utilization sooner and, thus, the mean
delays also rise sooner (as explained under Figure 8).

Consider instead the case of binomially distributed coding rates. In such scenario, each
terminal employs a slightly different binomial distribution (as described in 5.2), and,
consequently, consistently measures a different mean delay. Therefore, when examining
the impact that binomially distributed coding rates have on the mean delays,
it becomes clear that, unlike the case of normally and uniformly distributed coding rates,
a single terminal is no longer representative of all the others. Consequently, we
decided to study the empirical CDF of the mean delays measured by all the terminals in the
system, considering the samples coming from 30 independent repetitions.

21

Figure 10: Empirical CDF of the mean delays of the terminals when the coding rates are
binomially distributed

The ECDF in Figure 10 illustrates that, for N ≤ 20, increasing the number of blocks
per frame greatly improves the mean delays of the terminals, and, therefore, the
percentage of terminals that are considered to experience a good quality of service. Once
again, this is expected, as a higher number of blocks per frame increases the probability of
scheduling terminals with lower coding rates.

For N ≥ 30, instead, the influence of the number of blocks per frame decreases
considerably. This is again expected, as with more terminals, the frame mainly includes H3
blocks, and the likelihood of scheduling terminals with lower coding rates remains unchanged
despite increases in the number of blocks per frame.

The main thing to observe in these charts is that, unlike the case of normally and
uniformly distributed coding rates, the best-performing terminals are always
guaranteed to have great quality of service, while the lowest-performing ones are not
guaranteed to get any service at all. Matter of fact, for N = 40, the small step at the tail
of the distribution is due to the fact that some of the lowest-performing terminals remain
unscheduled for the whole simulation. For such terminals, the mean delay is manually set to
the simulation time limit.

22

8 Conclusions
In this project we studied the effectiveness of a maximum-coding-rate scheduling algorithm
for a satellite-based communication system, by means of the throughput, the mean packet
delay, and the mean frame utilization.

The simulator was developed using OMNeT++, and was thoughtfully validated using:
detailed debugging statements, runtime error handling, memory leak analysis, code pro-
filing, and, finally, both intuitive and mathematical proofs for a wide range of behavioral tests.

The experiments, designed to provide a comprehensive understanding of the system, revealed
that:

• The throughput increases as the number of terminals grows large, faster when the
coding rates are uniformly distributed, and slower when they are binomially or normally
distributed

• When the number of terminals is low-to-average, an higher number of blocks per frame
generally leads to an higher mean frame utilization, which leads to considerably lower
delays

• Considering 250 ms as an acceptable upper bound for the mean delays, when the coding
rates are binomially distributed, the best-performing terminals are always guaranteed to
have great quality of service, instead, when the coding rates are normally or uniformly
distributed, all the terminals get similar delays, and, thus, they can have a great quality
of service only when they are few in number

23

9 Appendix

9.1 Mathematical verification of the mean frame utilization

Consider the scenario introduced in Section 4.4.2, reported in the table below for convenience:

Parameter/Factor Value
sim-time-limit 800 s
repeat 30

codingRateDistribution Uniform
terminalCount 1

blocksPerFrame 1

minPacketSize 1 byte
maxPacketSize 1 byte
meanPacketInterarrivalTime 1 ms

We observed that, by doubling the number of terminals (from 1 to 2), the mean frame
utilization grew from 4.344± 0.010% to 6.689± 0.019% (99% CI), instead of the intuitive
8.688%. The reason behind this odd behavior is that with two terminals the random variables
representing the size and the capacity of a frame are no longer independent, therefore, it is
no longer true that

E
[

Size
Capacity

]
= E [Size] · E

[
1

Capacity

]
To understand this phenomenon better, consider a simplified version of the proposed scenario,
where there are still two terminals, competing for one single block, but only two coding rates,
L3 and L2, still uniformly distributed, and deterministic packet inter-arrival times of 1 ms.

To compute the PMF of the frame utilization, we can condition the probabilities to the fact
that the (only) block in the frame is scheduled with a specific coding rate:

P{Utilization = u} = P{Utilization = u | L3} · P{L3}+ P{Utilization = u | L2} · P{L2}
= P{Size = 904u | L3} · P{L3}+ P{Size = 1356u | L2} · P{L2}

In particular, P{L3} is the probability that the (only) block in the frame is scheduled with a
coding rate of L3. Since that only happens when both of the terminals have a coding rate of
L3 (see Section 1.1.2), and the coding rates are uniformly distributed, then P{L3} = 1/4.
Consequently, P{L2} = 3/4.

The key observation that needs to be made here is that, since the inter-arrival times of the
packets are deterministically set to 1 ms, every communication slot each queue receives
precisely 80 packets, hence, if only one terminal is scheduled, the other one accumulates
packets.

Moreover, a key assumption needed to compute the frame size probabilities is that, whenever
a terminal is scheduled, its queue always empties. It is reasonable to believe that assumption

24

to be true because, intuitively, for an L3 frame, it would require a single terminal to be
scheduled around 10 times in a row (even higher that that for an L2 frame).

Given that the previous assumption is true, we can say that the support of the random
variable Size | L3 is the finite set {80k | k ∈ N+, 80k ≤ 904} = {80k | k ∈ {1, ..., 11}}, and
computing P{Size = s | L3} becomes quite straightforward:

• For k = 1, P{Size = 80 | L3} = 0, because, as stated before, a coding rate of L3 only
happens when both of the terminals are scheduled, therefore, the minimum frame size is
160 bytes

• For k = 2, P{Size = 160 | L3} = 1/2, because this only happens if also in the previous
communication slot the terminals were scheduled together (i.e., either both extracted L2
or both extracted L3)

• For k = 3, P{Size = 240 | L3} = 1/2 · 1/4 + (1/2)2, because, looking at the previous
communication slots, there are only two ways this could have happened:

1. A single terminal was scheduled (1/2), then the opposite one (1/4), and finally both
(1, implied by the conditioning)

2. Both of the terminals were scheduled (1/2), then a single one (1/2), then both again
(1)

• For k = 4, P{Size = 320 | L3} = 1/2 · (1/4)2 + (1/2)2 · 1/4, because, just like before, there
are two ways this could have happened:

1. A single terminal was scheduled (1/2), then the opposite one, two times, (1/4)2, and
finally both (1)

2. Both of the terminals were scheduled (1/2), then a single one (1/2), then that same
one again (1/4), then both (1)

At this point, one can see that

P{Size = 80k, k ∈ {3, ..., 11} | L3} =
1

2
·
(
1

4

)k−2

+

(
1

2

)2

·
(
1

4

)k−3

therefore,

P{Size = 80k | L3} =

0 k = 1

1/2 k = 2

3/2 · (1/4)k−2 k ∈ {3, ..., 11}

With similar reasoning, one can also find that

P{Size = 80k | L2} =

1/2 k = 1

7/24 k = 2

15/6 · (1/4)k−1 k ∈ {3, ..., 16}

25

Finally, knowing P{Size = s | L3} and P{Size = s | L2} ∀s, one can trivially calculate
P{Utilization = u} ∀u as 1/4 · P{Size = 904u | L3}+ 3/4 · P{Size = 1356u | L2}.

Running a simulation for 8000 seconds (105 communication slots, enough to consistently
observe events that are quite unlikely) yields the empirical CDF shown in Figure 11. Since it
perfectly overlaps with the theoretical CDF computed before, as a qualitative check, we can
say that the system behaves as expected.

Figure 11: Empirical CDF against theoretical CDF of the frame utilization

26

9.2 Mathematical verification of the mean delay

Consider the scenario introduced in Section 4.4.2, reported in the table below for convenience:

Parameter/Factor Value
sim-time-limit 800 s
repeat 30

codingRateDistribution Uniform
terminalCount 1

blocksPerFrame 1

minPacketSize 1 byte
maxPacketSize 1 byte
meanPacketInterarrivalTime 1 ms

We observed that, by doubling the number of terminals (from 1 to 2), the mean delay
(taking, in the second case, the average of both terminals) grew from 39.997± 0.014 ms to
99.672± 0.737 ms (99% CI).

To understand why, consider a scenario in which the following simplifying assumptions hold:

• The frame always consist of only one block (M = 1)

• The coding rates are uniformly distributed

• The mean packet inter-arrival time sufficiently low, compared to the communication slot
duration, so that it is seldom that a terminal that could potentially be scheduled has
an empty queue (and, therefore, other terminals are scheduled even if they have a lower
coding rate)

• Whenever a terminal is scheduled, its queue always empties

In such scenario, which is a more general version of the one reported at the beginning of
this section, the computations to estimate the mean delay of the packets become rather
straightforward.

Whenever a packet arrives at a queue, in any case, it must wait at least until the start of the
next communication slot. Then, if the corresponding terminal is not scheduled immediately,
the packet will have to wait an additional 80·K ms, where K is a random variable representing
the number of consecutive communication slots in which the terminal is not scheduled. Since
at each communication slot the probability of being scheduled is independent from the
previous ones, K follows a geometric distribution, and estimating the mean delay E[D] of
the packets boils down to determining the parameter p of K:

E [D] = E [80− Ts + 80 ·K] = 80− E [Ts] + 80 · E [K] = 40 + 80 · E [K] = 40 + 80

(
1− p

p

)
In particular, Ts is the random variable that represents the within-slot arrival time of the
packets. As shown in 4.4.2, under the simplifying conditions stated before, Ts is uniformly
distributed between 0 and 80 ms, therefore, E [Ts] = 40 ms.

27

The parameter p of the geometric random variable K can be computed by observing that a
specific terminal, call it i, can only be scheduled if its coding rate CRi (CRi ∈ N,CRi ∈ [0, 6])
is the highest (or tied for the highest) among the coding rates of all the competing terminals:

p = P{Terminal i being scheduled} = P{CRi ≥ CRj ∀j}

Applying the law of total probability, the former equation can be rewritten as:

p = P{CRi ≥ CRj ∀j} =
6∑

k=0

P {CRi ≥ CRj ∀j |CRi = k} · P{CRi = k}

=
1

7
·

6∑
k=0

P {CRi ≥ CRj ∀j |CRi = k}

When N = 2, P {CRi ≥ CRj ∀j |CRi = k} is just the the probability that the coding rate k
of terminal i is greater than or equal to the one of terminal j, and that is (k + 1)/7. Due to
independence, the above formula can be generalized for any value of N by simply multiplying
the probabilities:

p =
1

7
·

6∑
k=0

(
k + 1

7

)N−1

Going back to the initial problem, when N = 2 we obtain:

p =
1

7
·

6∑
k=0

(
k + 1

7

)2−1

=
1

49
·

6∑
k=0

(k + 1) =
28

49
=

4

7

therefore,

E[D] = 40 + 80

(
1− p

p

)
= 40 +

3

4
· 80 = 100 ms

which fits perfectly in the confidence interval of the statistic that we wanted to explain
(99.672 ± 0.737 ms), consequently, even in this scenario, we can say with 99% confidence
that the system behaves as expected.

Moreover, as the number of terminals N goes to infinity, p converges to 1/7, therefore, we are
also able to say that, under the assumptions stated at the beginning of this section, an upper
bound for the mean delay that a terminal can expect to measure, shown in Figure 12, is:

E[D] = 40 + 80

(
1− p

p

)
= 40 + 6 · 80 = 520 ms

28

Figure 12: Mean delay that a terminal can expect to measure, as a function of the number of
terminals. The tests were conducted in the scenario reported below.

Parameter/Factor Value
sim-time-limit 80 s
repeat 30

codingRateDistribution Uniform
terminalCount 5− 50 (step 5)
blocksPerFrame 1

minPacketSize 1 byte
maxPacketSize 1 byte
meanPacketInterarrivalTime 10 ms

29

	Introduction
	Problem Description
	Communication system
	Scheduling algorithm

	Objectives
	Key Performance Indicators

	Modeling
	General Assumptions
	Preliminary validation
	Parameters
	Factors

	Implementation
	Modules
	Connections
	Custom Messages

	Verification
	Debugging
	Runtime error handling
	Memory analysis and code profiling
	Behavioral tests
	Deterministic test
	Introducing randomness
	Continuity test
	Degeneracy test
	Consistency test

	Calibration
	Packet inter-arrival times and sizes
	Coding rate distributions
	Warm-up period and simulation time limit

	Experiment design
	Data analysis
	Analysis of the throughput
	Analysis of the mean frame utilization
	Analysis of the delays

	Conclusions
	Appendix
	Mathematical verification of the mean frame utilization
	Mathematical verification of the mean delay

