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1 Introduction

1.1 Problem description

An inverted index is a foundational data structure used in information retrieval
systems like Google Search. Given a large collection of text files (e.g., articles, books, web
pages), the inverted index maps each detected word to the files in which it appears, along
with the number of times it appears in each file, for example:

cloud filel.txt:4 file2.txt:1 file3.txt:1
computing  filel.txt:1 file3.txt:2
is file3.txt:1

important  filel.txt:9 file3d.txt:1

In this brief report, we compare three possible solutions to build an inverted index: a simple
python non-parallel script, and two distributed applications, one based on the Hadoop
framework (v 3.1.3) and one based on the Spark framework (v 3.4.4).

1.2 Hardware and software

The test bench is composed by a cluster of by three virtual machines deployed on the
University of Pisa’s datacenter. Each VM is equipped with 7 GB of RAM, approximately
40 GB of storage, a dual (V)core Intel Xeon Silver 4208 @ 2.10 GHz and runs Ubuntu 22.04.5
LTS.

1.3 Datasets

The datasets consist of UTF-8 plain-text books randomly sampled from the Gutenberg
project:

Name Book count Size (approx.)
Tiny 6 500 KB
Small 19 5 MB
Medium 143 50 MB
Large 1328 500 MB
Huge 13490 5GB



https://www.gutenberg.org
https://www.gutenberg.org

2 Pseudo-code

In this section, we briefly present the map-reduce pseudo-code of the Hadoop solution,
abstracting from all the implementation details.

2.1 Mapper

For each input line of text, it splits the line into tokens, cleans the tokens by removing
punctuation marks and lowercasing them, and then outputs couples word, (filename, 1).

class Mapper

{
function map(FilenameAndOffset key, Text line)
{
tokens = split(line)
for (token t in tokens)
{
word = clean(t) // Remove punctuation marks and lowercase
filenameAndCount = (key.filename, 1)
emit (word, filenameAndCount)
}
}
}

2.2 Reducer

For each word, combines the (filename, count) values received from the mappers into a
clean, well-formatted output string.

class Reducer

{
function reduce(Text word, FilenameAndCount counts[])
{
// Given a word, keeps track of its occurrences in each file
Map<filename, integer> globalCounts

for FilenameAndCount c¢ in counts

{
previousCount = globalCounts.get(c.filename)
increment = c.count // Without a combiner it’s always 1
globalCounts.set(c.filename, previousCount + increment)

String outputlLine = buildOutputlLine(globalCounts) ;
emit (word, outputLine);



3 Results

3.1 Calibrating the Hadoop solution
3.1.1 Choosing the right input format

The widely-used TextInputFormat is designed to take textual input files, split them, and
feed them line-by-line to a number of mappers equal to the total number of input splits.
When TextInputFormat is dealing with a lot of small files, i.e., files smaller than the
split size (which is exactly what happens in this project), it creates as many mappers as
input files, which is extremely inefficient.

A better solution is to use CombineTextInputFormat, which automatically joins multiple
small files together, and, therefore, creates way less mappers than input files, leading to
far better performances (as shown in Figure 1). Note that with the biggest dataset, both
solutions crash because of insufficient disk space to store the mappers’ outputs, signaling a
strong need for a (possibly in-mapper) combiner, which is studied in Section 3.1.2.
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Figure 1: Execution times of TextInputFormat and CombineTextInputFormat as the size
of the dataset increases

3.1.2 Choosing the right combiner design

Figure 2 shows that, as expected, implementing an in-mapper combiner avoids the
emission of unnecessary intermediate results, reducing both network traffic and local
disk writes. Compared to a standard combiner (or no combiner at all), this comes at the
cost of a more complex implementation. In fact, it was necessary to implement a
manual flush mechanism that periodically checks how much memory the mapper is using and
flushes its aggregation map whenever a certain threshold is exceeded.
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Figure 2: Execution times of different combiner designs as the size of the dataset increases

3.1.3 Choosing the right number of reducers

With the configuration illustrated in Section 3.2, each node in the cluster can run up to
4 concurrent Hadoop tasks. Since there are 3 nodes in the cluster, the optimal number of
reducers is expected to be around 12. As Figure 3 shows, execution times are higher
with fewer than 12 reducers, indicating that the cluster’s resources are not being used to
their full potential. Having more than 12 reducers provides better load balancing, as
the standard deviation is lower, however, it also introduces more scheduling overhead.
For the selected configuration, 16 reducers seem to be a good compromise.
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Figure 3: Execution time of the in-mapper combiner as the number of reducers increases



3.2 Comparing the Hadoop, Spark and Python solutions
Hadoop and Spark are both configured to run on a fully distributed YARN installation:

Hadoop Spark
yarn.nodemanager.resource.memory-mb | 2048 || yarn.nodemanager.resource.memory-mb | 4096
yarn.app.mapreduce.am.resource.mb 512 || spark.yarn.am.memory 1024
mapreduce.map.memory.mb 512 || spark.driver.memory 1024
mapreduce.reduce.memory.mb 512 || spark.executor.memory 1024

spark.executor.memoryOverhead 1024
spark.executor.instances )
spark.executor.cores 2

Median +/- stddev of 3 runs
I Python (single-threaded)
I Spark (fully distributed)
I Hadoop (fully distributed)

W
(=}

N
(o)}

Execution time [minutes]
— — N
o @)1 o

[

500KB 5MB 50MB 500MB 5GB
Dataset size

Figure 4: Execution times of different solutions as the size of the dataset increases

As shown in Figure 4, the Hadoop solution, even with half the total dedicated RAM of
the Spark solution (6 GB vs 12 GB), achieves similar execution times. This comes
at no surprise, since we are operating in a memory-constrained environment with a
single-pass algorithm, the ideal use case for a MapReduce job. Moreover, as reported
in Section 3.1, the Hadoop solution was carefully fine-tuned for the input datasets,
instead, the Spark solution only uses off-the-shelf library components.

The single-threaded python solution, thanks to the reduced overhead, works remarkably
well for small datasets, but gets easily outperformed with heavier loads. Nevertheless,
its memory footprint remains the lowest, consistently using roughly as much memory
as the output index size (precisely: 1 MB, 11 MB, 59 MB, 622 MB and 4820 MB). Finally, it
should be highlighted that this solution only required 59 lines of code, which is 1.3 times
fewer than the Spark one and around 10 times fewer than the Hadoop one. This makes it
ideal for quickly developing a working prototype of the distributed application.
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