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Problem introduction

We want to develop a football tracking software:

* Given a (panoramic) video feed of a football match, the software must be
able to recognize the , the goalkeepers, the players and the ball
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State of the art

* Object detection models are generally classified into two main
categories:

" Two-stage detectors (e.g., Faster R-CNN): first generate region proposals,
then classify and refine bounding boxes

» Usually more accurate but slower

* One-stage detectors (e.g., The YOLO family): perform detection in a single
forward pass, directly predicting class probabilities and bounding boxes

» More popular, good compromise between accuracy and speed



Dataset description

* The dataset (https://universe.roboflow.com/roboflow-jvugo/football-players-
detection-3zvbc/dataset/14) contains 372 images, each with a resolution of

640x640 pixels, annotated with four classes:
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Mean
occurrences | 0.88
perimage
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Consistency checks

* Are there any images with more than 20 (moving) players?
* Are there any labels with either O or more than 3 referees?

Original image Annotated image (ground truth)
S g— - : :

BN ball W goalkeeper HEM player referee

MY




Consistency checks

* Are there any labels with more than 2 goalkeepers?

* Are there any images with more than one ball?

Original image Annotated image (ground truth)
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Refined dataset

* The original dataset is of relatively low quality

— We manually reviewed all 372 images it contained and, when necessary,
we re-annotated them using “Label Studio”

Label Studio

* Additionally, we expanded the dataset by introducing 28 new images,
bringing the total to 400



Data splitting

Full dataset (400)
9 Simple 80% - 20% split y
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9 5-Fold cross validation ) [o[F:! lly, with a small
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Data augmentation

e Ultralytics YOLO's training framework automatically
applies several data augmentation techniques:

Saturation Horizontal flip

Mosaic




Training strategy

YOLOvI1I N

Model sizes:
N, S, M L, X

YOLOv11l X

5-Fold cross validation

“— Validate on split 1

~—  Train on splits [1, 2, 3, 4]

Validate on split 5 —

Compute

>— Mean +/- Std Dev
of each metric

Train on splits [2, 3,4,5] —

From each validation
split we extract

L

AP@50 ball
AP@50 goalkeeper
AP@50 player

mAP@50

Same process as above

........................................... Mean +/‘_ Std Dev

Mean(AP@50 ball) = L 77 | AP@50y,

Mean(AP@50 player) = 1 S AP@50,1ayer,

Compute

Y

Select the best
model

A

of each metric




[ CROSS VALIDATION ]
Selection of the best model

AP@50 results
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[ TEST SET]

Final evaluation of the selected model
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[ TEST SET]
Final evaluation of the selected model
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Image prediction demo

Annotated image (ground truth)
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Team detection

Since there are no team labels, we must use an unsupervised approach:

1. Isolate the players
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Team detection

Since there are no team labels, we must use an unsupervised approach:

2. Take the upper third of the bounding box (i.e., the player’s shirt)
and calculate its mean color
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Team detection

Since there are no team labels, we must use an unsupervised approach:
3. Convert the mean colors from RGB to HSV space for better clustering

Feature space
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a) RGB

We don’t care about the Value (brightness)
since it does not define color
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Team detection

Since there are no team labels, we must use an unsupervised approach:
4. Apply any clustering/separation algorithm (we used K-Means with K=2)

Feature space (clustered)
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5. Annotate the image with the right colors
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