

Master Of Science in Computer Engineering - Intelligent Systems -

Vision-based spatiotemporal analysis of football matches

Francesco De Lucchini Salvatore La Porta

A.Y. 2024 / 2025

Problem introduction

We want to develop a **football tracking software**:

• Given a (panoramic) video feed of a football match, the software must be able to recognize the referee, the goalkeepers, the players and the ball

State of the art

- Object detection models are generally classified into two main categories:
 - Two-stage detectors (e.g., Faster R-CNN): first generate region proposals, then classify and refine bounding boxes
 - > Usually more accurate but slower
 - One-stage detectors (e.g., The YOLO family): perform detection in a single forward pass, directly predicting class probabilities and bounding boxes
 - > More popular, good compromise between accuracy and speed

Dataset description

• The dataset (https://universe.roboflow.com/roboflow-jvuqo/football-players-detection-3zvbc/dataset/14) contains 372 images, each with a resolution of 640×640 pixels, annotated with **four classes**:

	Ball	Goalkeeper	Player	Referee
Mean occurrences per image	0.88	0.77	19.96	2.32

Consistency checks

- Are there any images with more than 20 (moving) players?
- Are there any labels with either 0 or more than 3 referees?

Consistency checks

- Are there any labels with more than 2 goalkeepers?
- Are there any images with more than one ball?

Refined dataset

- The original dataset is of relatively low quality
- ⇒ We manually reviewed all 372 images it contained and, when necessary, we **re-annotated** them using "Label Studio"

 Additionally, we expanded the dataset by introducing 28 new images, bringing the total to 400

Data splitting

Data augmentation

• Ultralytics YOLO's training framework automatically applies several data augmentation techniques:

Saturation Horizontal flip

Scale

Mosaic

Training strategy

[CROSS VALIDATION]

Selection of the best model

[TEST SET]

Final evaluation of the selected model

Final evaluation of the selected model

Image prediction demo

Since there are no team labels, we must use an unsupervised approach:

1. Isolate the players

Since there are no team labels, we must use an unsupervised approach:

2. Take the upper third of the bounding box (i.e., the player's shirt) and calculate its mean color

Since there are no team labels, we must use an unsupervised approach:

3. Convert the mean colors from RGB to HSV space for better clustering

Value

Since there are no team labels, we must use an unsupervised approach:

4. Apply any clustering/separation algorithm (we used **K-Means** with K=2)

5. Annotate the image with the right colors

