Vision-based spatiotemporal
analysis of football matches

1% Francesco De Lucchini
dept. of Information Engineering
Universita di Pisa
La Spezia, Italy
f.delucchini @studenti.unipi.it

Abstract—The increasing availability of high-resolution sports
footage and the advancements in the field of computer vision
have opened new opportunities in the domain of sports intelli-
gence. Among these opportunities is the automated analysis of
football matches, both during during live gameplay, which offers
substantial benefits such as improved broadcasting experience
and enhanced fan interaction, and offline, which offers support
for coaching staff in tactical evaluations.

In this paper, we present a machine learning pipeline built
upon the YOLOV11 object detection model, capable of identifying
players, goalkeepers, referees, and the ball with a mean Average
Precision at IoU threshold 0.5 (mAP@50) of 0.827.

Additionally, we introduce an unsupervised learning approach
utilizing K-means clustering to effectively group players into two
distinct teams without prior labeling.

The proposed architecture operates at approximately 30
frames per second on a consumer-grade NVIDIA RTX 2060
Super GPU with 8GB of VRAM, when processing 1920x1080
resolution video streams. This performance demonstrates the fea-
sibility of real-time, vision-based football analysis on commodity
hardware. Such a system is particularly suited for applications in
cost-sensitive environments, such as local sports facilities aiming
to offer enhanced video services and basic Al-driven analytics
without the need for enterprise-level computational resources.

Overall, this work provides a practical foundation for real-time
sports analytics and paves the way for the development of more
advanced vision-based systems in accessible, real-world settings.

Index Terms—YOLO, Object detection, Sports analytics, Com-
puter vision, Football

I. INTRODUCTION

The field of sports analytics has witnessed rapid evolution
with the integration of computer vision and deep learning
techniques [1] [2].

These technologies are particularly useful in football, a sport
characterized by constant motion, complex interactions, and a
large number of visual elements on the field.

One of the key challenges in football video analysis is
the real-time detection and classification of entities such as
players, referees, goalkeepers, and the ball. In addition to
object identification, it is often crucial to determine the team
affiliation of each player, which is not always explicitly
available in raw footage and can be complicated by similar
jersey designs or lighting conditions.

Identifying these elements accurately is a prerequisite for
many downstream applications, including automatic highlight

27 Salvatore Laporta
dept. of Information Engineering
Universita di Pisa
Pisa, Italy
s.]laporta5 @studenti.unipi.it

generation, extraction of the ball’s trajectory, on-demand 3D
reconstructions and generation of virtual views, tactical eval-
uation, and statistics such as possession time percentage and
total number of passes per team [3].

II. RELATED WORK

Football match analysis initially relied on manual obser-
vations and physical measurements to estimate player move-
ments and strategies [4]. The early 2000s saw the emergence
of computer vision techniques using multi-camera setups and
background subtraction to track players [5]. With the deep
learning revolution, especially the rise of convolutional neural
networks (CNNs), robust detectors for players and the ball
were developed, significantly enhancing the accuracy of track-
ing and event recognition [6], [7]. These advances laid the
groundwork for referee assistance systems, enabling near-real-
time foul detection and automated offside evaluation through
frame-wise spatial analysis [8]. In recent years, benchmark
datasets like SoccerNet have unified evaluation protocols and
facilitated progress across tasks such as camera calibration,
player re-identification, action spotting, and tactical under-
standing [9]. Together, these contributions represent the shift
from handcrafted, offline annotations to fully automated, scal-
able football video analytics.

III. BACKGROUNDS

Object detection models are generally classified into two
main categories: two-stage and one-stage detectors.

Two-stage detectors, such as Faster R-CNN [10], first gen-
erate region proposals and then classify and refine bounding
boxes. They are known for high accuracy but often suffer from
slower inference speeds, making them less suitable for real-
time applications, such as sports analytics.

In contrast, one-stage detectors perform detection in a
single forward pass, directly predicting class probabilities and
bounding boxes over a dense grid. These models, such as SSD
[11] and the YOLO family (You Only Look Once) [12], offer
superior speed and are commonly used in real-time systems.

As an example architecture for the YOLO family, we
briefly illustrate the architecture of the YOLOvVS model [13].
YOLOVS is an object detection model that uses anchor boxes,
which are predefined bounding boxes of different sizes and

aspect ratios, to identify objects in an image at various scales
and orientations. The image is first passed through an input
layer and then processed by the backbone of the network,
which extracts features at multiple levels. These features are
then passed to the neck of the architecture, where they are
combined and refined to produce three feature maps. Each
map is responsible for detecting objects of a specific size:
80x80 for small objects, 40x40 for medium objects, and
20x20 for large objects. The feature maps are then sent to
the head of the model, which performs the classification
and localization tasks. The detection results are stored in
a multidimensional array that contains the predicted class,
confidence score, bounding box coordinates, and the width
and height of each detected object.

Backbone
C5/32 G
C4/16 C4
C3/8 a3
CU4 |]
Cl2 | A]
Input

Fig. 1. YOLOVS architecture [14]

IV. OVERVIEW

In this work, we present a prototype system for real-time
detection of players, goalkeepers, referees, and the ball within
football videos. The proposed solution consists of two main
components: a fine-tuned YOLOv11-based object detection
module and an unsupervised team classification stage based
on K-means clustering.

First, we describe the dataset employed for fine-tuning,
followed by a discussion of its limitations and the corrective
measures implemented. Subsequently, we detail the data split-
ting methodology, augmentation techniques, training strategy,
and computational resources utilized. Finally, we present and
analyze the results obtained.

A. Dataset

The original dataset! selected for fine-tuning YOLOv11
comprised 372 images, each with a resolution of 640x640

pixels, annotated with four object classes: ball,
goalkeepers, players, and referees. However,
the dataset exhibited several quality issues, including

inconsistent annotations such as the presence of multiple
balls, the absence of referees, and an unrealistic number of
moving players (i.e., over 20) in a single frame.

To address these deficiencies, a comprehensive manual
review of all 372 images was conducted. Each image was
meticulously inspected, and annotations were corrected or
refined as necessary to ensure accuracy and consistency across
all object classes.

Uhttps://universe.roboflow.com/roboflow-jvuqo/
football-players-detection-3zvbc/dataset/14

In order to enhance the dataset’s diversity and robustness,
28 additional images were incorporated, resulting in a final
set of 400 labeled images. The augmented dataset captures
a broader range of game scenarios, camera perspectives, and
lighting conditions, thereby aiming to improve the model’s
generalization capabilities.

Moreover, YOLO’s training pipeline applies several data
augmentation techniques by default to increase even more
robustness across varying visual conditions. These include
random variations in the levels of saturation, brightness, scale
(zoom), and random effects such as translations, horizontal
flips, and mosaics (stitch four training images together into
one, enriching the context and improving small-object detec-
tion).

B. Data splitting

A conventional approach to model development and evalu-
ation involves partitioning the dataset into three subsets:

o Training set: used to fit the model.

o Validation set: used for hyperparameter tuning and model
selection.

o Test set: used to assess the generalization performance of
the final selected model on previously unseen data.

However, given the relatively small size of our dataset (400
labeled instances), a fixed partitioning can result in perfor-
mance estimates that are sensitive to the specific composition
of the splits. In particular, each subset may, by chance, contain
samples that are disproportionately easy or difficult to predict,
leading to biased or unstable evaluation metrics.

To mitigate this issue, we employ, as shown in Fig. 2, K-
fold cross-validation:

1) The dataset is first divided into a training set (80%) and
a test set (20%).

2) We then perform 5-fold cross-validation on the training
portion to evaluate and select the best-performing model
based on the average performance across the validation
folds.

3) The selected model is retrained on the full training set
(i.e., the entire 80%) and evaluated on the held-out test
set, which remains untouched throughout training and
model selection.

Ideally, in scenarios involving limited data, a nested cross-
validation strategy would provide more reliable performance
estimates by repeating the entire training and evaluation pro-
cess across multiple test splits. Alternatively, repeating the
above procedure multiple times with different random seeds
offers a computationally feasible approximation. Nonetheless,
due to resource limitations, we opted for a single test split in
this study.

V. TRAINING STRATEGY

All model training and evaluations were conducted using
an RTX 2060 Super GPU with 8§ GB of VRAM. This is a
low-tier consumer-grade GPU, which aligns with the practical
and resource-conscious objectives of this study.

Full dataset (400)

Simple 80% - 20% split

Test set

Training set (320) (80)
L 5-Fold cross validation
e Validation fold Final
Training folds (256) (64) evaluation
Training folds (256) V"l‘d‘(‘gj)“ fold
. Validation fold Select the
Training folds (256) (64) bestmodel

Validation fold
64)

Validation fold
64) L

Training folds (256)

Training folds (256)

Fig. 2. Diagram illustrating the splitting of the dataset

We fine-tuned all available YOLOv11 model variants (n, s,
m, 1, x) on the curated dataset described above. Each model
was trained for 100 epochs using the default data augmentation
techniques provided by the Ultralytics YOLO framework, with
one exception: the scale parameter was reduced from 0.5
to 0.2, thereby limiting the random image scaling range to a
maximum of £20%.

When it comes to the evaluation metrics, we opted for the
built-in validation and benchmarking tools provided by the
Ultralytics YOLO framework:

1) Average Precision at [oU = 0.5 (AP@50): the average
precision scores across all classes, computed at an
Intersection over Union (IoU) threshold of 0.5.

2) Confusion Matrix: useful to identify common misclas-
sifications and to understand where the model is going
wrong.

3) Confidence, Precision and Recall curves: useful to eval-
uate whether the model is struggling more with recalling
objects or with assigning the correct labels

During experimentation, all model variants were compared
based on their average mAP@50 values computed over the
validation folds. The best-performing model was then retrained
on the entire training set and subjected to a final evaluation
using the previously held-out test set. This final evaluation
employed all three validation metrics listed above. The model
selected through this process is the one adopted for deploy-
ment in the production environment.

VI. RESULTS
A. Selection of the Best Model

Following just over 5 hours of training, the evaluation results
were obtained. Fig. 3 presents the mean Average Precision at
IoU = 0.5 (AP@50) along with the standard deviation for each
object class across the candidate models.

Based on this quantitative comparison, the m model was
selected as the most suitable choice, offering a favorable
balance between detection accuracy and computational effi-
ciency. While a more rigorous statistical approach, such as

increasing the sample size and computing confidence intervals,
or conducting other statistical tests, would provide more robust
insights, the observed trends in the chart are sufficient to
indicate that the m variant achieves the best trade-off for the
intended application.

AP@50 results

1.0}
-------------- e St |
0.8F I_ ——————— I.
&
(=]
9
7
iy 0.6
F
M T [il
n
©
EE 04}F 1
g
] —— ball
2 02} goalkeeper
—— player
referee
0.0F -1~ al
n s m 1 X
Model

Fig. 3. Mean =+ standard deviation of AP@50 per class, for each candidate
model

B. Evaluation of the Final Model

The selected model, m, was retrained on the full training set
and evaluated on the previously held-out test set, employing
the three evaluation metrics outlined in Section V.

Fig. 5 displays the AP@50 scores per class on the test
set. The model exhibits strong detection performance for
players, goalkeepers, and referees. However, detec-
tion of the ball remains significantly weaker, with an average
AP@50 of approximately 0.4.

The under-performance on ball detection can be attributed
to several factors:

o The small physical size of the ball relative to other objects

in the frame.

o The visual similarity between the ball and other round or
white elements (e.g., penalty spots, players’ heads).

o The low frequency of ball occurrences (typically only one
per image).

The normalized confusion matrix in Fig. 6 provides ad-
ditional insight into class-specific prediction behavior. The
following observations can be made:

o As previously noted, balls are frequently not detected

at all, contributing to their low recall and AP scores.

¢ Distinguishing between players, goalkeepers, and
referees proves to be somewhat challenging due to
their visually similar appearances, often differentiated
only by subtle cues such as uniform color.

o The model tends to hallucinate players, likely due
to ambiguous image compositions (e.g., a player lying
on the ground or multiple players closely contesting the
ball), leading to false positives.

— ball goalkeeper

Recall-Confidence curve

— player referee

Precision-Recall curve

1.0

0.8

o
)

0.6

Precision
Recall

o
=~

0.4

0.2 0.2

T

5

e
)

Precision

o
=~

o
o

0.0 0.4 0.6 0.8 1.0 0.0 0.4
Confidence

0.2

Fig. 4. Precision—Recall curves for the selected model m. A confidence

AP@50 results
1.000 @

10000000
(00000000

10000000
00000000

10000000
(00000000

8:860

10000000
(00000000
0000000
00000000
10000000
(00000000
0000000
00000000
10000000
(00000000
0000000
00000000
10000000
100000000
0000000
00000000
10000000
100000000
0000000
(00000000
10000000
100000000
000000

0.600

AP@50

0.400

0
(00000000
10000000
100000000
0000000
(00000000
10000000
00000000
10000000
(00000000
10000000
00000000
10000000
(00000000
0000000
00000000
10000000
(00000000
0000000
00000000
10000000
(00000000

0.200

0.000

Fig. 5. AP@50 per class for the best model m, evaluated on the held-out test
set. Ball detection shows notably lower performance

VII. TEAM ASSIGNMENT

As team affiliation labels are not available in the dataset, an
unsupervised approach is adopted to assign detected players to
their respective teams. Due to the lack of ground truth for team
membership, no standard performance metrics (e.g., accuracy
or precision) can be reported. Nonetheless, the process yields
visually coherent and meaningful groupings, as illustrated in
the following pipeline.

Following bounding box detection, the system extracts
jersey color features from each detected player. Specifically,
a small rectangular patch is cropped from the bounding box
at approximately two-thirds of the player’s height, typically
capturing the torso area, which best represents the team

Confidence

0.0 L

0.6 0.8 1.0 0.2 0.4 0.6 0.8

Recall

threshold near 0.2 offers a good trade-off between precision and recall

Confusion matrix [normalized] 10

ball UMY

0.8
goalkeeper
0.6
player
0.4
referee
0.2
background
0.0

Fig. 6. Normalized confusion matrix for the final model m, indicating class-
wise accuracy and common misclassifications

uniform. A set of sample patches from a single frame is shown
in Fig. 7.

From each patch, the dominant color is computed by
averaging the pixels values. To improve separability, only
the Hue and Saturation components are retained, as these
channels better capture perceptual color differences than raw
RGB values. The resulting color vectors are then passed to a
K-means clustering algorithm with the number of clusters set
to K = 2.

Goalkeepers and referees are excluded from this process, as
their uniforms are typically distinct and would introduce noise
into the clustering of moving players. After clustering, each
player is assigned to one of two teams based on proximity
to the cluster centroids. An example of the resulting team

0 1) 3 4 5 6 “7 8 9
| |
I RN
E— |

10 12
11 w- 13 ¥ 15
i-h;'l I' u &] F .J f

17 18 19

™

Fig. 7. Example torso patches extracted from detected player bounding boxes. These samples, taken from a single frame, represent the visual features used

for unsupervised team clustering

assignments is visualized in Fig. 8, where players in the same
cluster are marked with a shared color label.

Feature space (clustered)

1.0
= roun »
Il Team B
0.8F
0.6F
o
L
® °
3 ®
2
3 ¢
0.4
)
0.2F
LY)
o...o °
0.0 0.2 0.4 0.6 0.8 1.0

Hue

Fig. 8. Result of K-means clustering on torso color features

This unsupervised method enables generalization across
matches and teams, without requiring prior knowledge of
jersey designs or team identities. On a sample demonstration
video, the clustering produced an average silhouette score of
0.8, indicating well-separated and coherent clusters.

VIII. CONCLUSIONS

Overall, the quantitative evaluation confirms that our proto-
type performs reliably on the major object classes (players,
goalkeepers, and referees), and offers a practical
precision-recall trade-off suitable for real-time inference ap-
plications.

However, the challenges observed in ball detection high-
light a significant area for future enhancement. In particular,

the use of relatively low-resolution 640x640 images exac-
erbates the problem; compression artifacts and motion blur
strongly influences the visibility of small, fast-moving objects
like the ball, which often spans only a few pixels.

To address these issues, future work should consider ex-
panding the dataset with a larger number of high-quality,
high-resolution images and accurate annotations under diverse
conditions. The use of native HD video frames could reduce
compression-related artifacts and preserve fine visual details
critical for ball detection.

Moreover, given that the system operates on video streams,
temporal information can be exploited. For instance, simple
motion-based heuristics or interpolation techniques could be
used to correct inconsistencies (e.g., detecting if the ball
”jumps” implausibly between frames, suggesting a missed or
incorrect detection).

Once a robust object detection backbone is in place, ad-
ditional modules can be incorporated to extend the system’s
functionality, including, for example,:

o Field keypoint detection: identifying fixed landmarks
such as penalty boxes, sidelines, or the center circle to
allow for spatial context analysis and assist in determining
whether a player or ball is inside or outside the field of
play.

« Event detection: combining spatial and temporal data to
identify high-level game events such as passes, shots,
tackles, or offsides.

Integrating these capabilities would support the develop-
ment of a more comprehensive, automated analysis framework
for football videos, enabling applications in broadcasting,
coaching, and sports analytics.

REFERENCES

[1] K. Fujii, “Computer vision for sports analytics,” in Machine Learning in
Sports, ser. SpringerBriefs in Computer Science. Singapore: Springer,
2025. [Online]. Available: https://doi.org/10.1007/978-981-96-1445-5_2

[2] A. B. Rashid and M. A. K. Kausik, “Ai revolutionizing industries
worldwide: A comprehensive overview of its diverse applications,”
Hybrid Advances, vol. 7, 2024.

[3] B. T. Naik, M. F. Hashmi, and N. D. Bokde, “A comprehensive review
of computer vision in sports: Open issues, future trends and research
directions,” Applied Sciences, vol. 12, no. 9, 2022. [Online]. Available:
https://www.mdpi.com/2076-3417/12/9/4429

[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]
[12]
[13]

[14]

P. J. Figueroa, N. J. Leite, and R. M. L. Barros, “Tracking soccer players
aiming their kinematical motion analysis,” Computer Vision and Image
Understanding, vol. 101, no. 2, pp. 122-135, 2006.

J. Gudmundsson and T. Wolle, “Football analysis using spatio-temporal
tools,” in Proceedings of the 20th international conference on advances
in geographic information systems, 2012, pp. 566-569.

J. Eichner, J. Nowak, B. Grzelak, T. Gérecki, T. Pitka, and K. Dy-
czkowski, “Advanced vision techniques in soccer match analysis: From
detection to classification,” in VISIGRAPP (VisAPP) 2025, vol. 3, 2025,
pp. 808-815.

P. Andrews, N. Borch, and M. Fjeld, “Footyvision: Multi-object tracking,
localisation, and augmentation of players and ball in football video,” in
Proceedings of ICMIP, 2024.

Q. Zhang, L. Yu, and W. Yan, “Ai-driven image recognition system
for automated offside and foul detection in football matches using
computer vision,” International Journal of Advanced Computer Science
and Applications, vol. 16, no. 1, 2025.

S. Giancola, M. Amine, T. Dghaily, and B. Ghanem, “Soccernet: A
scalable dataset for action spotting in soccer videos,” in Proceedings
of the IEEE conference on computer vision and pattern recognition
workshops, 2018, pp. 1711-1721.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” NeurIPS, 2015.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “Ssd: Single shot multibox detector,” ECCV, 2016.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in CVPR, 2016.

G. Jocher et al., “YolovS by ultralytics,” 2023, https://github.com/
ultralytics/yolovs.

H. Liu, F Sun, J. Gu, and L. Deng, “Sf-yolov5: A lightweight
small object detection algorithm based on improved feature fusion
mode,” Sensors, vol. 22, no. 15, 2022. [Online]. Available: https:
/Iwww.mdpi.com/1424-8220/22/15/5817

