UNIVERSITA DI PISA

MASTER OF SCIENCE IN COMPUTER ENGINEERING

FOUNDATIONS OF CYBERSECURITY

Digital signature server

Francesco DE LUCCHINI

ACADEMIC YEAR 2024/2025

Contents

1

Introduction

1.1 Problem description
1.2 Security requirementso Lo
1.3 Software requirements Lo
1.4 Technical implementation

Authentication protocol

2.1 Server authentication
2.1.1 Sequence diagram
2.1.2 Design choices
2.1.3 Implementation details

2.2 Client authentication
2.2.1 Sequence diagram
2.2.2 Designchoices oL
2.2.3 Implementation details

Application logic
3.1 Messages e e
3.2 Operations L

Traffic analysis

—_ = e e

SO UL UL R W W w W

ENEEN RN

1 Introduction

1.1 Problem description

A digital signature server is a trusted third party that creates private-public key pairs,
stores them and generates digital signatures on the behalf of the users. This setup
is particularly valuable in organizational environments where end users, such as employees,
may not be trusted to securely manage their own cryptographic keys.

1.2 Security requirements

e Users are registered off-line. At registration, users receive the server’s public key and
a temporary password that must be changed at the first login.

Users authenticate the server by means of the server’s public key

The server authenticates the users by means of their password

The server stores users’ private keys in encrypted form

Users interact with the server through a secure channel that must be established
before issuing operations. The secure channel must fulfill confidentiality, integrity
(non-malleability), perfect forward secrecy and must be resistant to replay attacks

1.3 Software requirements

After securely connecting to the server, a user may invoke the following operations:

o CreateKeys: creates and stores a pair of private-public keys on behalf of the invoking
user. If a key pair is already present, the operation has no effect

e SignDocument: digitally signs the specified document on behalf of the invoking user

e VerifySignature: given a document, a signature, and a public key, checks whether
the document was digitally signed by the owner of the public key (computations are
performed only on the client side)

e GetPublicKey: returns the public key of a specified user

e DeleteKeys: deletes the key pair of the invoking user. After a key pair has been deleted,
an user can not create a new one unless it is (off-line) registered again

1.4 Technical implementation

The server (and a demo of the client) is implemented in C (in particular, C11), with mostl] of
the security features being provided by the OpenSSL library (version 3.5.0).

!The only exception is the hashing (and salting) of stored passwords, which is provided by the Argon2id
algorithm implementation of 1ibsodium (version 1.0.20)

The objective of this project is not to build a production-ready digital signature server but
rather to design an authentication protocol from scratch and implement it in a low-level
language, which forces you to consider all the security details. For this reason, several
simplifying design choices were made:

e Blocking sockets: the communication between a client and the server is implemented
using blocking TCP sockets (messages must arrive with no errors and in the correct order)

e Select syscall: instead of using multi-threading, the server handles multiple clients at
the same time by performing I/O multiplexing (select syscall) on a single thread

e Perfect send and recv syscalls: it is assumed that each send and recv syscall sends
or receives the entire buffer (in a real-word scenario, a while loop should be used)

¢ In-memory database: the database of users is just an array of structures populated at
the server’s startup with hard-coded default values. In particular, there are two default
users, 0 and 1, both with password as temporary password

e On-disk private key: the private key of the server is stored as an AES-128 encrypted
PEM file on the server’s filesystem. The password is server and is required at boot

Finally, all the messages are sent through sockets in two steps:
1. First, the length of the message is sent as 4-byte big-endian integer

2. Then, the actual message is sent

2 Authentication protocol

2.1 Server authentication

2.1.1 Sequence diagram

Legend
| | Unsecure channel R

yA——I\ >
Secure channel

—————————— >
Generate < ..>x = Signed by X
Noncec, PrivK¢, PubK ¢ Noncec, PubK ¢ R
" Generate
Nonceg, PrivK g, PubK g,
Transcript =
3 Nonce g, PubK g, Transcript <PubK g, Nonce s, PubK ¢, Noncec>g
Verify
Transcript
Both parties

Derive the Diffie-Hellman shared secret DHS
MasterSecret = DHS Il Nonceg Il Nonceo
S2CKey, C2SKey = KDF(MasterSecret)

Figure 1: Sequence diagram of the server authentication protocol

2.1.2 Design choices

The secure channel is established by using ephemeral Diffie-Hellman key exchange:

e Why Diffie-Hellman? Because the client and the server must share a secret in order to
implement a secure channel (symmetric encryption)

e Why ephemeral? To satisfy the perfect forward secrecy requirement (Section [1.2)): if,
somehow, one of the two private keys gets compromised, only the messages exchanged in
that session are at risk. To mitigate this issue even further, sessions are dropped by
the server every 5 minutes, forcing a key refresh. This also makes sure that not too
much data is encrypted with the same shared key, which is usually good practice (the
less information an attacker has, the better)

After the client’s hello message, the server replies with the signature of the handshake
transcript. This proves to the client that:

1. Noncec and PubK¢ were not modified during transit (Client — Server path)

2. Nonceg and PubKg were actually generated by the server and were not modified during
transit (Server — Client path)

3. The response of the server is not being replayed, as the signature links both the server’s
response and the client’s nonce

One might be wondering;:

e Why is there a client’s nonce (Noncec)? Since PubK¢ is chosen randomly and is included
in the server’s signed response, isn’t that sufficient to prove the freshness of the messages?
Yes, it should be sufficient. However, the role of the Diffie-Hellman public key is to achieve
a shared secret (hence, provide security), not to prove freshness. I find it better not to
mix roles and have each component of the messages add a specific security feature to the
protocol

e Why is there a server’s nonce (Nonceg)? It’s usually good practice to have a nonce coming
from both parties (imagine a single party with a defective/compromised RNG), moreover,
along with the client’s nonce, it adds randomness to the master secret

Finally, both parties compute the Diffie-Hellman shared secret, append it to the nonces, and
use it derive the symmetric keys needed for the secure channel. The latter is implemented
using authenticated encryption, as it checks all the requirements listed in Section [1.2]
Another option could have been to perform the encrypt-then-MAC process manually, but
the added complexity of the implementation was not worth the security benefit of using sepa-
rate keys for encryption and authentication, since the lifetime of the keys is very short anyways.

One might be wondering: why are two keys (S2CKey, C2SKey) derived from the master secret?
With a bi-directional key, an attacker could take a message going from the client to the server
and bounce it back in the opposite direction, and, with no additional precautions (see the
last point of Section [2.1.3)), it would still be a valid message. Moreover, if, somehow, one of
the keys gets compromised, only the traffic flowing in a single direction is at risk. Finally,
having mono-directional keys allows each key to encrypt less data overall (as stated before,
the less information an attacker has, the better).

2.1.3 Implementation details

e The Diffie-Hellman key exchange is implemented with the X25519 elliptic curve (one
of the curves recommended in TLS 1.3, which provides 128-bit security)E] and 16-byte
nonces. Public keys are sent through the socket in raw format (32-bytes fixed length)

e All signatures are made using ECDSA on the ANSI X9.62 Prime 256v1 (a.k.a. NIST
P-256) elliptic curve, which, again, targets the 128-bit security level

— Why elliptic curves? They (allegedlyED enable strong security with smaller key sizes
compared to traditional algorithms like RSA

e The key derivation function is HKDF based on SHA-256

2RFC 8446 - Section 4.2.7
3Should we trust the NIST recommended parameters?

4

https://www.rfc-editor.org/rfc/rfc8446#section-4.2.7
https://crypto.stackexchange.com/questions/10263/should-we-trust-the-nist-recommended-ecc-parameters

e The authenticated encryption scheme is implemented using AES-128-GCM, as shown in
Figure 2] In particular, the AAD field is always a 4-byte counter, incremented and checked
by both the client and the server on each message. Without this authenticated counter,
an adversary could reply a message within the same session (and the same direction)

12B 16 B 4B Variable length (1 to INT_MAX)
v TAG AAD Application-level message
H_A J
Y Y
Plaintext Authenticated Authenticated and encrypted

Figure 2: Composition of a message sent over the secure channel

2.2 Client authentication

2.2.1 Sequence diagram

Legend
— Unsecure channel
>
Secure channel
Secure channel already established @ : = | - - —-—-—-—-—-—- -3 >
Collect user input < ..>x = Signed by X
Userld, Password AUTH_REQUEST - Userld, Password

Verify
hash(Password) == getPswFromDB(UserId)

Bad message format / Password does not match
BAD_PARAMETERS
€ — — — — — — - o - ______
Password matches (first login)
PASSWORD_CHANGE_REQUIRED
- NEW_PASSWORD - NewPassword
< OK g updateDB(Userld, hash(NewPassword))
Password matches (already changed)
OK
€ — — - — o __

Figure 3: Sequence diagram of the client authentication protocol

2.2.2 Design choices

Once the secure channel is established, the client believes it is communicating with the
real server. The server, however, does not yet know the identity of the client. To fix this,
a simple username/password authentication is implemented: the client sends
its (username, password) pair, and the server checks it against the ones stored in the database.

Once the authentication protocol finishes, the server has all the information needed to create
a Session object, which links the communication socket with the authenticated client. In
particular, the Session object (temporarily) stores the plain-text password of the
client, as it is required to encrypt/decrypt the private key (as stated in Section one of
the requirements is that the private keys of the users are stored in encrypted form).

If, for any reason, one wants to avoid storing, even temporarily, the plain-text password of
the client on the server, a possible alternative is to encrypt the private key with the hash
of the password. It’s crucial that the hashing algorithm used here is different from the one
used for storage: if the same hashing algorithm is used, a database leak compromises all the
private keys.

2.2.3 Implementation details

e As stated in Section , the hashing (and salting) algorithm for password storage is
provided by the Argon2id implementation of libsodium (version 1.0.20)

e With AES-GCM, the length of the cipher-text is equal to the length of the plaint-text.
Without any precautions, this can leak the length of the users password to an eavesdropper.
For this reason, the client always sends a fixed amount of bytes (32) as a password.
The actual end of the password is marked by the null terminator (only visible once the
message is decrypted)

3 Application logic

3.1 Messages
Every application-level message is composed by two fields:
e Action: encoded in the first byte, is either:

— A COMMAND, issued by the client

enum COMMAND

{
AUTH_REQUEST ,
NEW_PASSWORD ,
CMD_CREATE_KEYS ,
CMD_SIGN_DOC,
CMD_GET_PUBKEY ,
CMD_DELETE_KEYS

I

— A RESPONSE, issued by the server

enum RESPONSE

{
0K,
PASSWORD_CHANGE_REQUIRED,
BAD_CMD,
BAD_PARAMETERS,
NO_KEYS,
KEYS_ALREADY_EXIST,
TIMED_QUT

i

e Parameters: optional, encoded from the second byte onwards

3.2 Operations

In this section, the implementation of each operation listed in the software requirements

(Section is briefly described:

e CreateKeys

— Action: CMD_CREATE_KEYS
— Parameters: None

— Implementation details: private ECDSA keys are serialized as AES-128 encrypted PEM
files and stored in the database (memory) as strings

e SignDocument

— Action: CMD_SIGN_DOC

— Parameters: The hash of the document to sign

— Implementation details: to minimize bandwidth usage, users do not actually send the
whole documents but their hash. A consequence of this is that the server does not
know the content of the signed documents. This is not a problem since the server
signs on behalf of the invoking user. The signature computed by the server is saved
on the client’s filesystem as {document}_signed.bin

e VerifySignature

— Action: -
— Parameters: -

— Implementation details: computations are performed only on the client side

e GetPublicKey

— Action: CMD_GET_PUBKEY
— Parameters: userId

— Implementation details: The received public key is saved on the client’s filesystem as
public_key_{userId}.pem

e DeleteKeys

— Action: CMD_DELETE_KEYS
— Parameters: None

— Implementation details: Nothing particular

4 Traffic analysis

In this section, I briefly analyze the traffic between the client and the server to check that
everything works as expected. As an example, the SignDocument operation is analyzed:

e Client request: as expected, after decryption, the server sees the CMD_SIGN_DOC command
with a 256-bit wide parameter

——————————— INCOMING AEAD MSG ——————————

IV (length = 12):
@xlace297155befb6ac095621e8
TAG (length = 16):
Oxc4eb6e9506f90465ac65b7b@cad21bc63
AAD (length = 4):
6
CIPHERTEXT (length = 33):
Oxf37983dff2ae705f8037a8aleacd40e5¢c3b9babe923248091c19e304622838c5ecC
PLAINTEXT
- ACTION (length = 1): CMD_SIGN_DOC
— PARAMETERS (length = 32):
0x7917f4e478a873c0f00e67b0196851f5d970d7410a1b1807cfc3b008efbfede27

What everyone can see

After decryption

Figure 4: Sample client request for the SignDocument operation

e The 256-bit wide parameter sent by the client actually corresponds to the SHA-256 of the
document to sign

~/Documents/Cybersecurity - Lab/Project openssl dgst —-sha256 document.txt

SHA2-256(document.txt)= 7917f4e478a873c0f00e67b019685f5d970d7410al1b1807cfc3b008efbfede2?

Figure 5: SHA-256 hash of the document used in Figure

e Server’s response, captured by Wireshark (grey bytes are TCP headers)

02 00 00 00 45
ik 61 B8 22 25
A9 D7 B3 4E 62

e

07 00 00 00 00
@D 72 B7 B8 32
1@ DF 13 52 29
@B OE FF 20 F1

00 00 40 00 40
1y D5 55 21 80
00 00 00 OC 3E
80 8F 7F 32 ED
D9 E6 7C D4 8F
84 73 DF 16 88
10 69 71 4E 71

Figure 6: Wireshark capture of the message described in Figurelzl

e Server’s response, logged by the server: as expected, the captured packet and the logs
match. Moreover, the AAD (sequence number) is correctly incremented with respect to
the client’s request

——————————— OUTGOING AEAD MSG - ———————-—
IV |(length = 12)}:
[0x3ed34f02ee73cd865b1424b1]
TAG (length = 16):
X794c2 f7f32edf 42987df02d
AAD |(length = 4):
7
CIPHERTEXT (length = 72):
Oxd9eb67cd48ffad3defe80057a9207b2fe@d72b7b8329e0a978473df168861T34f6534c969d434e8
210df1352294847e01069714e7179%9aa5ec5c98143a6259a9c0beff20f1060617
G I LUIZAP £ After decryption
- ACTION (length = 1): OK
— PARAMETERS (length = 71):
0x304502202e1ab24146cfc487483a7b2c478fb48dca27b66e55139c2e470761f5d11e90f7102210
4afd79730e4c5d6e4501e70034c0970a%94ecladc75643d0ba3bb0529e234a02

Figure 7: Server’s response to the SignDocument operation issued in Figure

10

	Introduction
	Problem description
	Security requirements
	Software requirements
	Technical implementation

	Authentication protocol
	Server authentication
	Sequence diagram
	Design choices
	Implementation details

	Client authentication
	Sequence diagram
	Design choices
	Implementation details

	Application logic
	Messages
	Operations

	Traffic analysis

